i3status_rs/blocks/battery/
sysfs.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
use std::convert::Infallible;
use std::path::{Path, PathBuf};
use std::str::FromStr;

use tokio::fs::read_dir;
use tokio::time::Interval;

use super::{BatteryDevice, BatteryInfo, BatteryStatus, DeviceName};
use crate::blocks::prelude::*;
use crate::util::read_file;

make_log_macro!(debug, "battery");

/// Path for the power supply devices
const POWER_SUPPLY_DEVICES_PATH: &str = "/sys/class/power_supply";

#[derive(Copy, Clone, Debug, Eq, PartialEq)]
enum CapacityLevel {
    Full,
    High,
    Normal,
    Low,
    Critical,
    Unknown,
}

impl FromStr for CapacityLevel {
    type Err = Infallible;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        Ok(match s {
            "Full" => Self::Full,
            "High" => Self::High,
            "Normal" => Self::Normal,
            "Low" => Self::Low,
            "Critical" => Self::Critical,
            _ => Self::Unknown,
        })
    }
}

impl CapacityLevel {
    fn percentage(self) -> Option<f64> {
        match self {
            CapacityLevel::Full => Some(100.0),
            CapacityLevel::High => Some(75.0),
            CapacityLevel::Normal => Some(50.0),
            CapacityLevel::Low => Some(25.0),
            CapacityLevel::Critical => Some(5.0),
            CapacityLevel::Unknown => None,
        }
    }
}

/// Represents a physical power supply device, as known to sysfs.
/// <https://www.kernel.org/doc/html/v5.15/power/power_supply_class.html>
pub(super) struct Device {
    dev_name: DeviceName,
    dev_path: Option<PathBuf>,
    dev_model: Option<String>,
    interval: Interval,
}

impl Device {
    pub(super) fn new(dev_name: DeviceName, dev_model: Option<String>, interval: Seconds) -> Self {
        Self {
            dev_name,
            dev_path: None,
            dev_model,
            interval: interval.timer(),
        }
    }

    /// Returns `self.dev_path` if it is still available. Otherwise, find any device that matches
    /// `self.dev_name`.
    async fn get_device_path(&mut self) -> Result<Option<&Path>> {
        if let Some(path) = &self.dev_path {
            if Self::device_available(path).await {
                debug!("battery '{}' is still available", path.display());
                return Ok(self.dev_path.as_deref());
            }
        }

        let mut matching_battery = None;

        let mut sysfs_dir = read_dir(POWER_SUPPLY_DEVICES_PATH)
            .await
            .error("failed to read /sys/class/power_supply directory")?;
        while let Some(dir) = sysfs_dir
            .next_entry()
            .await
            .error("failed to read /sys/class/power_supply directory")?
        {
            let name = dir.file_name();
            let name = name.to_str().error("non UTF-8 battery path")?;

            let path = dir.path();

            if !self.dev_name.matches(name)
                || Self::read_prop::<String>(&path, "type").await.as_deref() != Some("Battery")
                || !Self::device_available(&path).await
            {
                continue;
            }

            let model_name = Self::read_prop::<String>(&path, "model_name").await;
            debug!(
                "battery '{}', model={:?}",
                path.display(),
                model_name.as_deref()
            );
            if let Some(dev_model) = &self.dev_model {
                if model_name.as_deref() != Some(dev_model.as_str()) {
                    debug!("Skipping based on model.");
                    continue;
                }
            }

            debug!(
                "Found matching battery: '{}' matches {:?}",
                path.display(),
                self.dev_name
            );

            // Better to default to the system battery, rather than possibly a keyboard or mouse battery.
            // System batteries usually start with BAT or CMB.
            if name.starts_with("BAT") || name.starts_with("CMB") {
                return Ok(Some(self.dev_path.insert(path)));
            } else {
                matching_battery = Some(path);
            }
        }

        Ok(match matching_battery {
            Some(path) => Some(self.dev_path.insert(path)),
            None => {
                debug!("No batteries found");
                None
            }
        })
    }

    async fn read_prop<T: FromStr + Send + Sync>(path: &Path, prop: &str) -> Option<T> {
        read_file(path.join(prop))
            .await
            .ok()
            .and_then(|x| x.parse().ok())
    }

    async fn device_available(path: &Path) -> bool {
        // If `scope` is `Device`, then this is HID, in which case we don't have to check the
        // `present` property, because the existence of the device directory implies that the device
        // is available
        Self::read_prop::<String>(path, "scope").await.as_deref() == Some("Device")
            || Self::read_prop::<u8>(path, "present").await == Some(1)
    }
}

#[async_trait]
impl BatteryDevice for Device {
    async fn get_info(&mut self) -> Result<Option<BatteryInfo>> {
        // Check if the battery is available
        let path = match self.get_device_path().await? {
            Some(path) => path,
            None => return Ok(None),
        };

        // Read all the necessary data
        let (
            status,
            capacity_level,
            capacity,
            charge_now,
            charge_full,
            energy_now,
            energy_full,
            power_now,
            current_now,
            voltage_now,
            time_to_empty,
            time_to_full,
        ) = tokio::join!(
            Self::read_prop::<BatteryStatus>(path, "status"),
            Self::read_prop::<CapacityLevel>(path, "capacity_level"),
            Self::read_prop::<f64>(path, "capacity"),
            Self::read_prop::<f64>(path, "charge_now"), // uAh
            Self::read_prop::<f64>(path, "charge_full"), // uAh
            Self::read_prop::<f64>(path, "energy_now"), // uWh
            Self::read_prop::<f64>(path, "energy_full"), // uWh
            Self::read_prop::<f64>(path, "power_now"),  // uW
            Self::read_prop::<f64>(path, "current_now"), // uA
            Self::read_prop::<f64>(path, "voltage_now"), // uV
            Self::read_prop::<f64>(path, "time_to_empty"), // seconds
            Self::read_prop::<f64>(path, "time_to_full"), // seconds
        );

        if !Self::device_available(path).await {
            // Device became unavailable while we were reading data from it. The simplest thing we
            // can do now is to pretend it wasn't available to begin with.
            debug!("battery suddenly unavailable");
            return Ok(None);
        }

        debug!("status = {:?}", status);
        debug!("capacity_level = {:?}", capacity_level);
        debug!("capacity = {:?}", capacity);
        debug!("charge_now = {:?}", charge_now);
        debug!("charge_full = {:?}", charge_full);
        debug!("energy_now = {:?}", energy_now);
        debug!("energy_full = {:?}", energy_full);
        debug!("power_now = {:?}", power_now);
        debug!("current_now = {:?}", current_now);
        debug!("voltage_now = {:?}", voltage_now);
        debug!("time_to_empty = {:?}", time_to_empty);
        debug!("time_to_full = {:?}", time_to_full);

        let charge_now = charge_now.map(|c| c * 1e-6); // uAh -> Ah
        let charge_full = charge_full.map(|c| c * 1e-6); // uAh -> Ah
        let energy_now = energy_now.map(|e| e * 1e-6); // uWh -> Wh
        let energy_full = energy_full.map(|e| e * 1e-6); // uWh -> Wh
        let power_now = power_now.map(|e| e * 1e-6); // uW -> W
        let current_now = current_now.map(|e| e * 1e-6); // uA -> A
        let voltage_now = voltage_now.map(|e| e * 1e-6); // uV -> V

        let status = status.unwrap_or_default();

        // Prefer `charge_now/charge_full` and `energy_now/energy_full` because `capacity` is
        // calculated using `_full_design`, which is not practical (#1410, #1906).
        let calc_capacity = |now, full| Some(now? / full? * 100.0);
        let capacity = calc_capacity(charge_now, charge_full)
            .or_else(|| calc_capacity(energy_now, energy_full))
            .or(capacity)
            .or_else(|| capacity_level.and_then(CapacityLevel::percentage))
            .error("Failed to get capacity")?;

        // A * V = W
        let power = power_now
            .or_else(|| current_now.zip(voltage_now).map(|(c, v)| c * v))
            .filter(|&p| p != 0.0);

        // Ah * V = Wh
        // Wh / W = h
        let time_remaining = match status {
            BatteryStatus::Charging =>
            {
                #[allow(clippy::unnecessary_lazy_evaluations)]
                time_to_full.or_else(|| match (energy_now, energy_full, power) {
                    (Some(en), Some(ef), Some(p)) => Some((ef - en) / p * 3600.0),
                    _ => match (charge_now, charge_full, voltage_now, power) {
                        (Some(cn), Some(cf), Some(v), Some(p)) => Some((cf - cn) * v / p * 3600.0),
                        _ => None,
                    },
                })
            }
            BatteryStatus::Discharging =>
            {
                #[allow(clippy::unnecessary_lazy_evaluations)]
                time_to_empty.or_else(|| match (energy_now, power) {
                    (Some(en), Some(p)) => Some(en / p * 3600.0),
                    _ => match (charge_now, voltage_now, power) {
                        (Some(cn), Some(v), Some(p)) => Some(cn * v / p * 3600.0),
                        _ => None,
                    },
                })
            }
            _ => None,
        };

        Ok(Some(BatteryInfo {
            status,
            capacity,
            power,
            time_remaining,
        }))
    }

    async fn wait_for_change(&mut self) -> Result<()> {
        self.interval.tick().await;
        Ok(())
    }
}